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Next we want to prove a local Schauder estimate at the boundary of a domain. First we
will consider the special case where the domain is locally an upper-half-space. We shall use
coordinates = (z1,%2,...,2,) on R" and let ' = (21,22,...,2,-1). Let R} = {z : 2, > 0},
R ={z:x, <0},and S = {z : z, = 0}. Let B} = Br(0)Nn{z : z, > 0} for all R > 0 and
Sgr = BrN{z:xz, =0}

Lemma 1. Let p € (0,1). Consider a ball BR(0) in R™ and let B = Br(0)N{z : z, > 0}, using
coordinates ¥ = (1, T, ..., 3,) on R™. Suppose u € C**(B},) solves
Lu= aijDiju + b Diu+cu=f in BE,
u = on Sg.

where a7, b, c : C’O’“(B_E) are coefficients, f € CO’“’(B_E), and p € C**(Sg). Assume the coeffi-
cients satisfy the bounds

MéP? < a¥(2)€&; < AJEf for v € BE, £ € R,
Z ||aij||/00,u(3;%) + Z RHbZH,CO,u(BE) + R2||CH/CO,H(BE) S Ba
ij=1 i=1
for some constants A\, A, € (0,00) such that 0 <A< A and f € CO’“(B_E). Then
0l sz, < C ([l + RS + 1P si)
for some constant C' = C(n, u, A\, A, B) € (0,00).

Proof. 1t suffices to prove the Schauder estimate in the special case that ¢ = 0. To see this, recall
that we can extend ¢ to a C?# function on B}, by letting (', z,,) = ¢(2’). Let v = u — . Then

Lv=f— Ly in B},
v =0 on Sg.

Since v = 0 on Sk,
|U|/27M;B§/2 < |80|/27MB;/2 + |U|;7M;B§/2
< |¢|;7M;B§/2 +C <|v|0;B;§ + R2|f|3,u;3§ + R2|L90|6,H;B§>
<10l ms +C ([ulos + Plag + o1l s + 1ol s )

< C (Julogy + By s + Pl )



where C' = C(n, u, \, A, 8) € (0,00).

To prove the Schauder estimate in the special case that ¢ = 0, we can do the argument from
scaling from the last lecture. Recall that we used interpolation and the simple abstract lemma to
reduce to proof of the Schauder estimate to proving that for every ¢ > 0,

R2+“[D2 ]2 gr < 6R2+u[D2u]2,M;B§ +C (|U| B + R2|f|0u3+>

7 K R/
for some constant C' = C'(n, u, A\, A, 5,§) € (0,00). We can apply interpolation and the simple
abstract lemma here by, arguing as in the Holder continuity lectures, extending u to a C?* function
on Br(0) such that

ul - < [y, < Cluly e

[DQU]M;B:; S [DQU]WBP S C(”’#’) [DQU]MB:;

and applying the interpolation inequalities and simple abstract lemma to u on Bg/2(0) and Bg(0).
Now take a sequence u, € C**(B;") such that
Lkuk = fk in Bfr,
ur = 0 on 5].

for some elliptic operator L, with uniform ellipticity and C%* bounds on the coefficients and

fi € CO*(Bf) and

[DQUk] BT > 5[D uk] By +k (|Uk|2 B + |fk|0/ﬁ;31+> .

1/2
Let zg, yx € Bfm such that

| D?ug (1) — D*up(yi)|
|z — yi|#

> %[DQuk]#;B+
and pyp = |zx — yx|- Recall that p, — 0 as k — oco. After passing to a subsequence, it suffices to
consider the following two cases:

(a) dist(xg, S1)/pr — 00 as k — o0

(b) v = sup, dist(zg, S1)/pr < 00.

In case (a), we can rescale as before letting

uk(zy, + pr) — ur(wr) — pr Yoy Diwn(wr)as — (1/2)07 22051 Dijun(wn) v,
pk—‘ru[Dzuk]u;BfL

ﬂk(l‘ =

and letting @, converges to some % in C? on compact subsets of R*. u will be a solution to a
constant coefficient elliptic equation of the form @“D;;u = 0 on R", D*u is nonconstant, and
[D?U],,.gn < 00, contradicting the Liousville lemma.

For case (b), we instead take z; € Sy such that |z, — 2| < 2yp, and rescale letting

up (2 + pr) — wk(2) — pre Doy Diun(zi)s — (1/2)p D072y Dijug(2i) iz,
pz—"—lu[‘Z)QUIC]M;BIL
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so that the upper-half-space remains fixed under scaling and (zy — 2x)/pr and (yx — 2x)/px remain
in a compact subset of R . w;, will then converge to some u in C? on compact subsets of the upper-
half-space R’} and @ will satisfy to a constant coefficient elliptic equation of the form @ D;;u = 0
on R}, @ =0 on S, D*u is nonconstant on R’ , and [D*u],.zn < co.

We can rotate so that . .
> @Dji=Y  \Dyii =0
5,5=1 t,j=1
however, in the process we rotate the domain of u to a half-space lying on one side of an (n — 1)-
dimensional linear subspace of R™. Let

w($1,$2, s ,1'71) =u (\/)\_1:617 \/)\_2.772, trt \/)\—nxn)

so that w is harmonic on its domain, which is a half-space lying on one side of an (n—1)-dimensional
linear subspace of R”. Rotate again so that the domain of w is R}. Now w is a harmonic function
on R” such that w = 0 on S, D*w is nonconstant on R}, and [D*w],z» < oo.

Now extend w to a function on R™ by odd reflection, letting

w(x', x,) = —w(—a',x,) for 2/ <0, z, € R.

Clearly w is continuous on R™ with w = 0 on S and Dw is defined and continuous on R" with
Dw(0, x,,) unambiguously defined on S. Since w = 0 on S and w is harmonic,

n—1
D, w=Aw— ZDiiw =0onS.

i=1

Thus, using w = 0 on S, D?w exists and is continuous on S with D?w = 0 on S. Now we extended
w to a harmonic function on R™ such that D*w is nonconstant on R and [D?w)] pry <00,
contradicting the Liousville lemma. O]

Now let i € (0,1) and Q be a C?** domain in R”. Suppose that u € C*#(Q) solves

Lu = a”Dijju+ V' Dyu+ cu = f in B},

u = @ on Sg.
where a”, bi, ¢ : C%*(Q) are coefficients satisfying

MEP < a¥(2)&&; < AlEf for x € By, £ € R™,

> 10 Wy + D B N nigy + B2l oy < 6
=1

ij=1

for some constants A\, A, 3 € (0,00) and f € C%*(Q) and ¢ € C**(99). Given a point y € 99,
there exists a small ball Br(y) and a C?* diffeomorphism ¥ : Bg(y) — R" such that

W(Q) N Br(0) = Bf,  W(0Q) N Br(0) = Sg

and VU is close to the identity map in C%*. (Note of course that the domain Q could be bad
enough behaved that we will have to choose a very small R.) Moreover, we can extend ¢ to a C%*
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function on QN Bg(y). Let 4 = uo U™, GV = a¥ o U1 b =bo Ul e=coU ]}v: fowt

and § = oo ¥~! on B}. Then
Diu = Dy(ti o W) = DyuD; V",
Diju = D;(DyuD;¥*) = DyuD;W*D; W' + DyuD,; V",

and thus B B _ B
@ D;W* DV Dyt + @Y Dy * Dyt + b' D;W* Dyt + ¢ = f in By

Moreover, u = @ on Sg. Therefore, by the Schauder estimates above,
@l sz, < C ([l + B\l s + 1Ploss)
for some constant C' = C'(n, u, A\, A, B) € (0,00), implying that

’u|/2,u;QﬂBR/4(y) < C (|U|O;QHBR(O) + R2’f|6,u;QﬂBR(O) + |30|/2,,u;8QﬂBR(O))
for C'=C(n,pu, N\, A, B) € (0,00).

Theorem 1 (Global Schauder estimates). Let p € (0,1) and Q be a bounded C** domain. Suppose
u € C*M(Q) solves the uniformly elliptic equation

Lu= aijDiju + b Diu+cu= f in Q,
where the coefficients a” b, c € CO*(Q) satisfy
MéP? < a¥(2)&&; < A forz € Q, € € RY,
a0 0 + 600 + e < B,

for some constants A\, A, 3 > 0 and f € CO*(Q). Then

[ul2,0 < C (|ulog + | flowa + |©l2,mo0)

for some constant C' = C(n, u, \, A, 5,Q2) € (0,00). In particular, if ¢ <0 in 2, then by the weak
mazximum principle,

ul2 e < C([flowe + [@l2m00)
for some constant C = C'(n,u, A\, A, B,Q) € (0,00).

Proof. Recall that for every y € 9€) there exists R = R(y) > 0 such that

|u|,2,,u,;QﬂBR/4(y) S C (|U|O§QOBR(ZJ) + R2|f|6,u;QﬂBR(y) + |¢|§,p;8QﬂBR(y)) (1)

for C = C(n,u, \, A, B) € (0,00). Since  is a bounded, we can cover 0f) by a finite collection
of balls Bgr(y,y16(y;), 7 = 1,2,...,N, where N depends on Q. Let R; = R(y;) for each j,
R, = inf; R;, and

Q' ={z € Q:dist(z,00) < R./16}.
Observe that 2 is covered by Q' and Bp,s(y;): if © € Q\ ', there exists z € 9Q such that
|z — 2| < R./16 and there exists j such that z € Bg,/16(y;), so © € Br,s(y;). Recall that

‘u|2,u;ﬂ’ S C <|U|O;Q + ’f|0,,u;ﬂ) (2)
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for Q' CC Q for some constant C' = C(n, u, A\, A, 5,Q,Q) € (0, 00).

Now we can obtain supremum estimates on u, Du and D?*u by combining (1) and (2). We can
also bound [D?u],.q by combining (1), (2), and the supremum estimate on D?*u. Note that it is
important that € and the balls Bg,/s(y;) cover Q and we have Schauder estimates bounding u
on ' and balls Bp, /4(y;), that way whenever z,y € Q with |z —y| < R./8, either both z,y are in
Q) or both x,y in Bg,4(y;) for some j.

To be specific, let z € Q. If z € ', then

[u(z)| + |Du(z)| + |D*u(z)] < C(luloe + [ floun)

by (2). If instead = € Bg,s(y;) for some j, then

|u(z)| + Rj| Du(z)| + R]2'|D2U(I)| <C (|u’0;QﬁBRj(yj) + R]2'|f|6”u;QﬂBRj(yj) + |S0|,2,u;8QﬂBRj(yj)>
by (1). Therefore,
lu(@)] + |Du(z)] + |D*u(z)| < C ([ulog + 1£16,u0 + [©l2 400) (3)

for some constant C' = C(n, u, A\, A, 8, Q) € (0, 00).
Let x,y € Q. If z,y € €V, then

|D*u(z) — D*u(y)|
|z =yl

S [DQU]MQ’ S C (‘U|O;Q + |f|6,u;ﬂ)

by (2). If instead 2 € 2\ Q' and |z —y| < R,/8, then © € By, s(y;) for some j and y € Bg, 4(y;)

SO

| D*u(z) — D*u(y)|
|z =yl

< [DZU]MBRJ-M(ZI]') < CR;H (‘u|0§QﬁBRj (y5) + Rjz"fu),,u;ﬂﬂBR]. (y5) + ‘SD‘IZ,H;BQOBRJ. (yj)>
by (1). If instead z € Q\ ' and |z — y| > R./8, then

| D?u(x) — D2u(y)| 2 _
|z — gyl = (R./8) o [D*ul < OB (Juloe + [l we + |22 00)

by (3). Therefore,
| D?u(z) — D*u(y)]
|z =yl

for some constant C' = C'(n, u, A\, A, 5,2, Q) € (0, 00). ]

S C (’u|0§Q + ‘f’é),u;Q + |¢‘é,u;8ﬂ)



