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Next we want to prove a local Schauder estimate at the boundary of a domain. First we
will consider the special case where the domain is locally an upper-half-space. We shall use
coordinates x = (x1, x2, . . . , xn) on Rn and let x′ = (x1, x2, . . . , xn−1). Let Rn

+ = {x : xn > 0},
Rn
− = {x : xn < 0}, and S = {x : xn = 0}. Let B+

R = BR(0) ∩ {x : xn ≥ 0} for all R > 0 and
SR = BR ∩ {x : xn = 0}.
Lemma 1. Let µ ∈ (0, 1). Consider a ball BR(0) in Rn and let B+

R = BR(0)∩{x : xn ≥ 0}, using

coordinates x = (x1, x2, . . . , xn) on Rn. Suppose u ∈ C2,µ(B+
R) solves

Lu = aijDiju+ biDiu+ cu = f in B+
R ,

u = ϕ on SR.

where aij, bi, c : C0,µ(B+
R) are coefficients, f ∈ C0,µ(B+

R), and ϕ ∈ C2,µ(SR). Assume the coeffi-
cients satisfy the bounds

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for x ∈ B+
R , ξ ∈ Rn,

n∑
i,j=1

‖aij‖′
C0,µ(B+

R)
+

n∑
i=1

R‖bi‖′
C0,µ(B+

R)
+R2‖c‖′

C0,µ(B+
R)
≤ β,

for some constants λ,Λ, β ∈ (0,∞) such that 0 < λ ≤ Λ and f ∈ C0,µ(B+
R). Then

|u|′
2,µ;B+

R/2

≤ C
(
|u|0;B+

R
+R2|f |′

0,µ;B+
R

+ |ϕ|′2,µ;SR

)
for some constant C = C(n, µ, λ,Λ, β) ∈ (0,∞).

Proof. It suffices to prove the Schauder estimate in the special case that ϕ ≡ 0. To see this, recall
that we can extend ϕ to a C2,µ function on B+

R by letting ϕ(x′, xn) = ϕ(x′). Let v = u−ϕ. Then

Lv = f − Lϕ in B+
R ,

v = 0 on SR.

Since v = 0 on SR,

|u|′
2,µ;B+

R/2

≤ |ϕ|′
2,µ;B+

R/2

+ |v|′
2,µ;B+

R/2

≤ |ϕ|′
2,µ;B+

R/2

+ C
(
|v|0;B+

R
+R2|f |′

0,µ;B+
R

+R2|Lϕ|′
0,µ;B+

R

)
≤ |ϕ|′

2,µ;B+
R/2

+ C
(
|u|0;B+

R
+ |ϕ|0;B+

R
+R2|f |′

0,µ;B+
R

+ |ϕ|′
2,µ;B+

R

)
≤ C

(
|u|0;B+

R
+R2|f |′

0,µ;B+
R

+ |ϕ|′2,µ;SR

)
,
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where C = C(n, µ, λ,Λ, β) ∈ (0,∞).
To prove the Schauder estimate in the special case that ϕ ≡ 0, we can do the argument from

scaling from the last lecture. Recall that we used interpolation and the simple abstract lemma to
reduce to proof of the Schauder estimate to proving that for every δ > 0,

R2+µ[D2u]2,µ;B+
R/2
≤ δR2+µ[D2u]2,µ;B+

R
+ C

(
|u|′

2;B+
R

+R2|f |′
0,µ;B+

R

)
for some constant C = C(n, µ, λ,Λ, β, δ) ∈ (0,∞). We can apply interpolation and the simple
abstract lemma here by, arguing as in the Hölder continuity lectures, extending u to a C2,µ function
on BR(0) such that

|u|′
2;B+

ρ
≤ |u|′2;Bρ ≤ C(n)|u|′

2;B+
ρ
,

[D2u]µ;B+
ρ
≤ [D2u]µ;Bρ ≤ C(n, µ)[D2u]µ;B+

ρ

and applying the interpolation inequalities and simple abstract lemma to u on BR/2(0) and BR(0).

Now take a sequence uk ∈ C2,µ(B+
1 ) such that

Lkuk = fk in B+
1 ,

uk = 0 on S1.

for some elliptic operator Lk with uniform ellipticity and C0,µ bounds on the coefficients and

fk ∈ C0,µ(B+
1 ) and

[D2uk]µ;B+
1/2

> δ[D2uk]µ;B+
1

+ k
(
|uk|2;B+

1
+ |fk|0,µ;B+

1

)
.

Let xk, yk ∈ B+
1/2 such that

|D2uk(xk)−D2uk(yk)|
|xk − yk|µ

≥ 1

2
[D2uk]µ;B+

1/2

and ρk = |xk − yk|. Recall that ρk → 0 as k → ∞. After passing to a subsequence, it suffices to
consider the following two cases:

(a) dist(xk, S1)/ρk →∞ as k →∞

(b) γ = supk dist(xk, S1)/ρk <∞.

In case (a), we can rescale as before letting

ũk(x) =
uk(xk + ρkx)− uk(xk)− ρk

∑n
i=1Diuk(xk)xi − (1/2)ρ2

k

∑n
i,j=1Dijuk(xk)xixj

ρ2+µ
k [D2uk]µ;B+

1

and letting ũk converges to some ũ in C2 on compact subsets of Rn. ũ will be a solution to a
constant coefficient elliptic equation of the form ãijDijũ = 0 on Rn, D2ũ is nonconstant, and
[D2ũ]µ;Rn <∞, contradicting the Liousville lemma.

For case (b), we instead take zk ∈ S1 such that |xk − zk| ≤ 2γρk and rescale letting

ũk(x) =
uk(zk + ρkx)− uk(zk)− ρk

∑n
i=1Diuk(zk)xi − (1/2)ρ2

k

∑n
i,j=1Dijuk(zk)xixj

ρ2+µ
k [D2uk]µ;B+

1
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so that the upper-half-space remains fixed under scaling and (xk− zk)/ρk and (yk− zk)/ρk remain
in a compact subset of Rn

+. ũk will then converge to some ũ in C2 on compact subsets of the upper-
half-space Rn

+ and ũ will satisfy to a constant coefficient elliptic equation of the form ãijDijũ = 0
on Rn

+, ũ = 0 on S, D2ũ is nonconstant on Rn
+, and [D2ũ]µ;Rn+ <∞.

We can rotate so that
n∑

i,j=1

ãijDijũ =
n∑

i,j=1

λiDiiũ = 0

however, in the process we rotate the domain of ũ to a half-space lying on one side of an (n− 1)-
dimensional linear subspace of Rn. Let

w(x1, x2, . . . , xn) = ũ
(√

λ1x1,
√
λ2x2, . . . ,

√
λnxn

)
so that w is harmonic on its domain, which is a half-space lying on one side of an (n−1)-dimensional
linear subspace of Rn. Rotate again so that the domain of w is Rn

+. Now w is a harmonic function
on Rn

+ such that w = 0 on S, D2w is nonconstant on Rn
+, and [D2w]µ;Rn+ <∞.

Now extend w to a function on Rn by odd reflection, letting

w(x′, xn) = −w(−x′, xn) for x′ < 0, xn ∈ R.

Clearly w is continuous on Rn with w = 0 on S and Dw is defined and continuous on Rn with
Dw(0, xn) unambiguously defined on S. Since w = 0 on S and w is harmonic,

Dnnw = ∆w −
n−1∑
i=1

Diiw = 0 on S.

Thus, using w = 0 on S, D2w exists and is continuous on S with D2w = 0 on S. Now we extended
w to a harmonic function on Rn such that D2w is nonconstant on Rn

+ and [D2w]µ;Rn+ < ∞,
contradicting the Liousville lemma.

Now let µ ∈ (0, 1) and Ω be a C2,µ domain in Rn. Suppose that u ∈ C2,µ(Ω) solves

Lu = aijDiju+ biDiu+ cu = f in B+
R ,

u = ϕ on SR.

where aij, bi, c : C0,µ(Ω) are coefficients satisfying

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for x ∈ B+
R , ξ ∈ Rn,

n∑
i,j=1

‖aij‖′
C0,µ(B+

R)
+

n∑
i=1

R‖bi‖′
C0,µ(B+

R)
+R2‖c‖′

C0,µ(B+
R)
≤ β,

for some constants λ,Λ, β ∈ (0,∞) and f ∈ C0,µ(Ω) and ϕ ∈ C2,µ(∂Ω). Given a point y ∈ ∂Ω,
there exists a small ball BR(y) and a C2,µ diffeomorphism Ψ : BR(y)→ Rn such that

Ψ(Ω) ∩BR(0) = B+
R , Ψ(∂Ω) ∩BR(0) = SR

and Ψ is close to the identity map in C2,µ. (Note of course that the domain Ω could be bad
enough behaved that we will have to choose a very small R.) Moreover, we can extend ϕ to a C2,µ
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function on Ω ∩ BR(y). Let ũ = u ◦Ψ−1, ãij = aij ◦Ψ−1, b̃i = bi ◦Ψ−1, c̃ = c ◦Ψ−1, f̃ = f ◦Ψ−1,

and ϕ̃ = ϕ ◦Ψ−1 on B+
R . Then

Diu = Di(ũ ◦Ψ) = DkũDiΨ
k,

Diju = Dj(DkũDiΨ
k) = DklũDiΨ

kDjΨ
l +DkũDijΨ

k,

and thus
ãijDiΨ

kDjΨ
lDklũ+ ãijDijΨ

kDkũ+ b̃iDiΨ
kDkũ+ c̃ũ = f̃ in B+

R .

Moreover, ũ = ϕ̃ on SR. Therefore, by the Schauder estimates above,

|ũ|′
2,µ;B+

R/2

≤ C
(
|ũ|0;B+

R
+R2|f̃ |′

0,µ;B+
R

+ |ϕ̃|′2,µ;SR

)
for some constant C = C(n, µ, λ,Λ, β) ∈ (0,∞), implying that

|u|′2,µ;Ω∩BR/4(y) ≤ C
(
|u|0;Ω∩BR(0) +R2|f |′0,µ;Ω∩BR(0) + |ϕ|′2,µ;∂Ω∩BR(0)

)
for C = C(n, µ, λ,Λ, β) ∈ (0,∞).

Theorem 1 (Global Schauder estimates). Let µ ∈ (0, 1) and Ω be a bounded C2,µ domain. Suppose
u ∈ C2,µ(Ω) solves the uniformly elliptic equation

Lu = aijDiju+ biDiu+ cu = f in Ω,

where the coefficients aij, bi, c ∈ C0,µ(Ω) satisfy

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 for x ∈ Ω, ξ ∈ Rn,

|aij|0,µ;Ω + |bi|0,µ;Ω + |c|0,µ;Ω ≤ β,

for some constants λ,Λ, β > 0 and f ∈ C0,µ(Ω). Then

|u|2,µ;Ω ≤ C (|u|0;Ω + |f |0,µ;Ω + |ϕ|2,µ;∂Ω)

for some constant C = C(n, µ, λ,Λ, β,Ω) ∈ (0,∞). In particular, if c ≤ 0 in Ω, then by the weak
maximum principle,

|u|2,µ;Ω ≤ C (|f |0,µ;Ω + |ϕ|2,µ;∂Ω)

for some constant C = C(n, µ, λ,Λ, β,Ω) ∈ (0,∞).

Proof. Recall that for every y ∈ ∂Ω there exists R = R(y) > 0 such that

|u|′2,µ;Ω∩BR/4(y) ≤ C
(
|u|0;Ω∩BR(y) +R2|f |′0,µ;Ω∩BR(y) + |ϕ|′2,µ;∂Ω∩BR(y)

)
(1)

for C = C(n, µ, λ,Λ, β) ∈ (0,∞). Since Ω is a bounded, we can cover ∂Ω by a finite collection
of balls BR(yj)/16(yj), j = 1, 2, . . . , N , where N depends on Ω. Let Rj = R(yj) for each j,
R∗ = infj Rj, and

Ω′ = {x ∈ Ω : dist(x, ∂Ω) < R∗/16}.
Observe that Ω is covered by Ω′ and BRj/8(yj): if x ∈ Ω \ Ω′, there exists z ∈ ∂Ω such that
|x− z| < R∗/16 and there exists j such that z ∈ BRj/16(yj), so x ∈ BRj/8(yj). Recall that

|u|2,µ;Ω′ ≤ C (|u|0;Ω + |f |0,µ;Ω) (2)
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for Ω′ ⊂⊂ Ω for some constant C = C(n, µ, λ,Λ, β,Ω′,Ω) ∈ (0,∞).
Now we can obtain supremum estimates on u, Du and D2u by combining (1) and (2). We can

also bound [D2u]µ;Ω by combining (1), (2), and the supremum estimate on D2u. Note that it is
important that Ω′ and the balls BRj/8(yj) cover Ω and we have Schauder estimates bounding u

on Ω′ and balls BRj/4(yj), that way whenever x, y ∈ Ω with |x− y| < R∗/8, either both x, y are in
Ω′ or both x, y in BRj/4(yj) for some j.

To be specific, let x ∈ Ω. If x ∈ Ω′, then

|u(x)|+ |Du(x)|+ |D2u(x)| ≤ C (|u|0;Ω + |f |0,µ;Ω)

by (2). If instead x ∈ BRj/8(yj) for some j, then

|u(x)|+Rj|Du(x)|+R2
j |D2u(x)| ≤ C

(
|u|0;Ω∩BRj (yj) +R2

j |f |′0,µ;Ω∩BRj (yj)
+ |ϕ|′2,µ;∂Ω∩BRj (yj)

)
by (1). Therefore,

|u(x)|+ |Du(x)|+ |D2u(x)| ≤ C
(
|u|0;Ω + |f |′0,µ;Ω + |ϕ|′2,µ;∂Ω

)
(3)

for some constant C = C(n, µ, λ,Λ, β,Ω′,Ω) ∈ (0,∞).
Let x, y ∈ Ω. If x, y ∈ Ω′, then

|D2u(x)−D2u(y)|
|x− y|µ

≤ [D2u]µ;Ω′ ≤ C
(
|u|0;Ω + |f |′0,µ;Ω

)
by (2). If instead x ∈ Ω \Ω′ and |x− y| < R∗/8, then x ∈ BRj/8(yj) for some j and y ∈ BRj/4(yj)
so

|D2u(x)−D2u(y)|
|x− y|µ

≤ [D2u]µ;BRj/4(yj) ≤ CR−µj

(
|u|0;Ω∩BRj (yj) +R2

j |f |′0,µ;Ω∩BRj (yj)
+ |ϕ|′2,µ;∂Ω∩BRj (yj)

)
by (1). If instead x ∈ Ω \ Ω′ and |x− y| ≥ R∗/8, then

|D2u(x)−D2u(y)|
|x− y|µ

≤ 2

(R∗/8)µ
sup

Ω
|D2u| ≤ CR−µ∗

(
|u|0;Ω + |f |′0,µ;Ω + |ϕ|′2,µ;∂Ω

)
by (3). Therefore,

|D2u(x)−D2u(y)|
|x− y|µ

≤ C
(
|u|0;Ω + |f |′0,µ;Ω + |ϕ|′2,µ;∂Ω

)
for some constant C = C(n, µ, λ,Λ, β,Ω′,Ω) ∈ (0,∞).
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